The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition.

نویسندگان

  • J G Heddle
  • S J Blance
  • D B Zamble
  • F Hollfelder
  • D A Miller
  • L M Wentzell
  • C T Walsh
  • A Maxwell
چکیده

Microcin B17 is a 3.1-kDa bactericidal peptide; the putative target of this antibiotic is DNA gyrase. Microcin B17 has no detectable effect on gyrase-catalysed DNA supercoiling or relaxation activities in vitro and is unable to stabilise DNA cleavage in the absence of nucleotides. However, in the presence of ATP, or the non-hydrolysable analogue 5'-adenylyl beta,gamma-imidodiphosphate, microcin B17 stabilises a gyrase-dependent DNA cleavage complex in a manner reminiscent of quinolones, Ca(2+), or the bacterial toxin CcdB. The pattern of DNA cleavage produced by gyrase in the presence of microcin B17 is different from that produced by quinolones and more closely resembles Ca(2+)-mediated cleavage. Several gyrase mutants, including well-known quinolone-resistant mutants, are cross resistant to microcin-induced DNA cleavage. We suggest that microcin exerts its effects through a mechanism that has similarities to those of both the bacterial toxin CcdB and the quinolone antibacterial agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation.

Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sens...

متن کامل

Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase.

Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751...

متن کامل

In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites.

Microcin B17 (MccB17) is a 3.1-kDa Escherichia coli antibiotic that contains thiazole and oxazole heterocycles in a peptide backbone. MccB17 inhibits its cellular target, DNA gyrase, by trapping the enzyme in a complex that is covalently bound to double-strand cleaved DNA, in a manner similar to the well-known quinolone drugs. The identification of gyrase as the target of MccB17 provides an opp...

متن کامل

Synthesis of full length and truncated microcin B17 analogues as DNA gyrase poisons.

Microcin B17 (MccB17) is a post-translationally modified peptide containing thiazole and oxazole heterocycles that interrupt the peptide backbone. MccB17 is capable of poisoning DNA gyrase through stabilization of the gyrase-DNA cleavage complex and has therefore attracted significant attention. Using a combination of Fmoc-strategy solid-phase peptide synthesis and solution-phase fragment assem...

متن کامل

Fragments of the Bacterial Toxin Microcin B17 as Gyrase Poisons

Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex), which triggers a chain of events leading to cell death. Microcin B17 (MccB17) is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 307 5  شماره 

صفحات  -

تاریخ انتشار 2001